大数据详解与现状

大数据无疑是近期最时髦的词汇了。不管是云计算、社交网络,还是物联网、移动互联网和智慧城市,都要与大数据扯上关系。大数据已经成为有特别含义的专用词汇,不在单指数据体量大。那么,什么是大数据,大数据发展的现状,大数据能给我们带来什么?很多人不一定清楚。下面,我想就这几个问题和大家一起交流一下。

一、大数据的基本知识

(一)大数据的背景和定义

1、大数据产生的背景

随着网络和信息技术的不断普及,人类产生的数据量正在呈指数级增长。大约每两年翻一番,根据监测,这个速度在2020 年之前会继续保持下去。这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。

资料显示,2011年,全球数据规模为1.8ZB,可以填满575亿个32GB的iPad,这些iPad可以在中国修建两座长城。到2020年,全球数据将达到40ZB,如果把它们全部存入蓝光光盘,这些光盘和424艘尼米兹号航母重量相当。我国,2010年新存储的数据为250PB,2012年中国的数据存储量达到364EB,约为日本的60%,北美的7%。

淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。百度公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。

大量新数据源的出现则导致了非结构化、半结构化数据爆发式的增长。信息数据的单位由TB-PB-EB-ZB的级别。这些由我们创造的信息背后产生的这些数据早已经远远超越了目前人力所能处理的范畴。如何管理和使用这些数据,逐渐成为一个新的领域,于是大数据的概念应运而生。

2、大数据的定义

大数据一词,最早出现于20世纪90年代,当时的数据仓库之父Bill Inmon,经常提及Big Data。

2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。所以,很多人认为,2011年是大数据元年。

大数据还没有统一的标准定义,大多数人认可的定义有三个。

百度搜索的定义为:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据有4V特点:数据体量(Volume)大、数据类别(Variety)大、数据处理速度(Velocity)快、数据真实性(Veracity)高。

互联网周刊的定义为:"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。

研究机构认为:"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。

国家信息中心专家委员会主任宁家骏表示:大数据是指无法在一定时间内使用传统数据库软件工具对其内容进行抓取、管理和处理的数据集。大数据不仅仅是大,还有它的复杂性和沙里淘金的重要性。

(二)特点

1、数据体量大,现在大型数据集,数据量一般在10TB规模左右,更多的认为应该达到PB规模。

2、数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。如前文提到的网络日志、视频、图片、地理位置信息,等等。

3、数据处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。

4、数据价值密度低,价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。

也有人认为,大数据最重要的特征是将数据处理的对象扩展到互联网级别(Internet Scale),技术上的进展主要包括:1)单数据集达到PB级别;2)非结构化占主流;3)几天至数秒内完成高速处理。

(三)大数据技术

大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。

主要可分为:数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现等8种技术。

大数据技术主要形成了批处理、流处理和交互分析三种计算模式:

离线批处理(Batch Processing)技术以MapReduce和Hadoop系统为代表,

实时流处理(Stream Processing)技术以Yahoo的S4系统和Twitter的Storm系统为代表,

交互式分析(Interactive Analysis)技术以谷歌的Dremel系统为代表。

(四)大数据的处理

很多人说,大数据时代,是数据为王的时代。但是,大数据不只是指海量的信息,更强调的是人类对信息的筛选、处理。有专家认为,大数据的真谛是删除,而删除的真谛是不删除,也就是保留有用的东西。所以,大数据的处理,也就是在海量数据中淘金的过程。

大数据的处理方法有很多,普遍适用的大数据处理流程,可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。

1、采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片是需要深入的思考和设计。

2、导入/预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3、统计分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4、挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。

该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

(五)大数据的应用

大数据的应用范围非常广。有机构预测,“大数据”的发展,将使零售业净利润增长60%以上,制造业的产品开发、组装成本将下降50%以上。

在制造行业,企业通过对网上数据分析了解客户需求和掌握市场动向,并对大数据进行分析后,就可以有效实现对采购和合理库存量的管理,大大减少因盲目进货而导致销售损失。

在商业上,国外一些超市利用对手机的定位和购物推车获得商场内顾客在各处停留时间,利用视频监视图像软件分析顾客购物行为,优化商场布局和货架排列。

在政府决策上,分析几十年来的天气数据,将各地降雨、气温、土壤状况和历年农作物产量做成精密图表,就可以预测农产品生产趋势,政府的激励措施、作物存储量和农业服务也可以随之确定。

二、大数据的发展现状

大数据的快速发展,使它成为IT领域的又一大新兴产业。据中央财经大学中国经济管理研究院博士张永力估算,国外大数据行业约有1000亿美元的市场,而且每年都以10%的速度在增长,增速是软件行业的两倍。我国2012年大数据市场规模大约4.7亿元,2013年增速将达到138%,达到11.2亿元,产业发展潜力非常巨大。

(一)政府积极介入推动

2009年,联合国启动“全球脉动计划”,借大数据推动落后地区发展。2012年1月,世界经济论坛年会把“大数据、大影响”作为重要议题。美国从开放政府数据、开展关键技术研究和推动大数据应用三方面布局大数据产业。美国在开放政府上非常积极,通过Data.gov开放37万个数据集,并开放网站的API和源代码,提供上千个数据应用。除了推动本国政府数据开放,美国倡导发起全球开放政府数据运动,已有41个国家响应。美国政府还投资两亿美元促进大数据核心技术研究和应用,把大数据放在与集成电路、互联网同等重要的位置,从国家层面推进。

(二)资本市场也对大数据钟爱有加

2012年4月,大数据分析公司Splunk高调宣传大数据,引发投资者关注。12月初,为企业市场提供Hadoop解决方案的创业公司Cloudera获得6500万美元融资,估值约为7亿美元。近期,高盛联席主席斯科特.斯坦福说:“投资大数据及其运用回报率最高”。大数据领域的企业并购热度也在上升,单笔平均并购金额方面,大数据超过云计算位居IT领域榜首,在总并购额上也位居第二。

(三)人才需求巨大

据一家国际咨询公司,盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。

(四)国内情况

大数据的火爆,也带动了国内学术界、产业界和政府对大数据的热情。2011年以来,中国计算机学会、中国通信学会先后成立了大数据委员会,研究大数据中的科学与工程问题,科技部的《中国云科技发展“十二五”专项规划》和工信部的《物联网“十二五”发展规划》等都把大数据技术作为一项重点予以支持。其中工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。

应用方面,中国三大通信运营商都在结合自身业务情况,积极推进大数据应用工作,并取得了较好的进展。电子商务企业阿里巴巴提出要做中国数据分析第一平台,通过掌握的企业交易数据,借助大数据技术自动分析判定是否给予企业贷款,全程不会出现人工干预。据透露,截至目前阿里巴巴已经放贷300多亿元,坏账率约0.3%左右,大大低于商业银行。

研发企业方面,我国能够处理大数据的企业并不是很多。北京永洪科技在这方面做的不错。永洪科技在大数据、分布式计算、数据分析等领域具备核心竞争力、自主创新并拥有多项发明专利。推出的Z系列产品在大数据的应用分析中在国际上也是领先的。

大数据的热潮触发了一场思想启蒙运动,使得“大数据是资产,不是包袱”、“要拿数据说话”等观念逐步深入人心,改变了以往不重视数据积累,不相信数据分析等认识。有了这种思维模式的改变,大数据的应用就有了希望。

三、大数据落地面临的困难

应该说,全球来看,对大数据认识、研究和应用还都处于初期阶段。特别是对我国来说,大数据真正落地,还需要迈过三道坎。

第一,数据是否足够丰富和开放?丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧,每年新增数据量仅为美国的7%,欧洲的12%,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。

同时,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,以邻为壑、共享难,这给数据利用造成极大障碍。制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法,无法既保证共享又防止滥用,一方面欠缺推动政府和公共数据的政策,另一方面数据保护和隐私保护方面的制度不完善抑制了开放的积极性。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的第一道砍。

第二,是否掌握强大的数据分析工具?要以低成本和可扩展的方式处理大数据,这就需要对整个IT架构进行重构,开发先进的软件平台和算法。这方面,国外又一次走在我们前面。特别是近年来以开源模式发展起来的Hadoop等大数据处理软件平台,及其相关产业已经在美国初步形成。

而我国数据处理技术基础薄弱,总体上以跟随为主,难以满足大数据大规模应用的需求。如果把大数据比作石油,那数据分析工具就是勘探、钻井、提炼、加工的技术。我国必须掌握大数据关键技术,才能将资源转化为价值。应该说,要迈过这道坎,开源技术为我们提供了很好的基础。

第三,管理理念和运作方式能否适配数据化决策?大数据开发的根本目的是以数据分析为基础,帮助人们做出更明智的决策,优化企业和社会运转。哈佛商业评论说,大数据本质上是“一场管理革命”。大数据时代的决策不能仅凭经验,而真正要“拿数据说话”。因此,大数据能够真正发挥作用,深层次看,还要改善我们的管理模式,需要管理方式和架构的与大数据技术工具相适配。这或许是我们最难迈过的一道坎了。

四、推进大数据建设应做好的工作

大数据有巨大的社会和商业价值,就看会不会挖掘,是否善于运用数据分析的结果。同时,它又是一个应用驱动性很强的服务,要做好大数据产业,为经济发展提供更大的动力,需要从以下几人方面入手。

(一)建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。

(二)规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

(三)搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。

(四)培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

版权所有:北京天地通电信有限责任公司 公司地址: 北京市丰台区杜家坎周公路3号院甲

电话:010-52713196 010-52713168 传真:010-52713196-3131

ICP证:京ICP备11033530号-2 京公网安备11010802012321号